Convergent Filter Bases

Roland Coghetto
Rue de la Brasserie 5
7100 La Louvière, Belgium

Summary. We are inspired by the work of Henri Cartan [10], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).

MSC: 54A20 03B35

Keywords: convergence; filter; filter base; Frechet filter; limit; net; sequence

MML identifier: CARDFIL2 version: 8.1.04 5.32.1246

The notation and terminology used in this paper have been introduced in the following articles: [24], [1], [2], [33], [20], [18], [28], [11], [12], [13], [29], [3], [37], [25], [26], [4], [17], [30], [5], [14], [23], [35], [36], [22], [31], [6], [7], [19], [27], and [15].

1. Filters – Set-Theoretical Approach

From now on X denotes a non empty set, \mathcal{F} denotes a filter of X, and S denotes a family of subsets of X.

Let X be a set and S be a family of subsets of X. We say that S is upper if and only if

(Def. 1) for every subsets Y_1, Y_2 of X such that $Y_1 \in S$ and $Y_1 \subseteq Y_2$ holds $Y_2 \in S$.

Let us note that there exists a \cap-closed family of subsets of X which is non empty and there exists a non empty, \cap-closed family of subsets of X which is upper.

Let X be a non empty set. Let us note that there exists a non empty, upper, \cap-closed family of subsets of X which has non empty elements.

Now we state the propositions:
(1) S is a non empty, upper, \cap-closed family of subsets of X with non empty elements if and only if S is a filter of X.

(2) Let us consider non empty sets X_1, X_2, a filter \mathcal{F}_1 of X_1, and a filter \mathcal{F}_2 of X_2. Then the set of all $f_1 \times f_2$ where f_1 is an element of \mathcal{F}_1, f_2 is an element of \mathcal{F}_2 is a non empty family of subsets of $X_1 \times X_2$.

Let X be a non empty set. We say that X is \cap-finite closed if and only if

(Def. 2) for every finite, non empty subset S_1 of X, $\bigcap S_1 \in X$.

One can check that there exists a non empty set which is \cap-finite closed.

Now we state the proposition:

(3) Let us consider a non empty set X. If X is \cap-finite closed, then X is \cap-closed.

Note that every non empty set which is \cap-finite closed is also \cap-closed.

(4) Let us consider a set X, and a family S of subsets of X. Then S is \cap-closed and $X \in S$ if and only if \(\text{FinMeetCl}(S) \subseteq S \).

(5) Let us consider a non empty set X, and a non empty subset A of X.

Then $\{B, \text{where } B \text{ is a subset of } X: A \subseteq B\}$ is a filter of X.

Let X be a non empty set. Note that every filter of X is \cap-closed.

(6) Let us consider a set X, and a family B of subsets of X. If $B = \{X\}$, then B is upper.

(7) Let us consider a non empty set X, and a filter \mathcal{F}' of X. Then $\mathcal{F}' \neq 2^X$.

Let X be a non empty set. The functor $\text{Filt}(X)$ yielding a non empty set is defined by the term

(Def. 3) the set of all \mathcal{F}' where \mathcal{F}' is a filter of X.

Let I be a non empty set and M be a $(\text{Filt}(X))$-valued many sorted set indexed by I. The intersection of the family of filters M yielding a filter of X is defined by the term

(Def. 4) $\bigcap \text{rng } M$.

Let \mathcal{F}_1, \mathcal{F}_2 be filters of X. We say that \mathcal{F}_1 is coarser than \mathcal{F}_2 if and only if

(Def. 5) $\mathcal{F}_1 \subseteq \mathcal{F}_2$.

One can verify that the predicate is reflexive. We say that \mathcal{F}_1 is finer than \mathcal{F}_2 if and only if

(Def. 6) $\mathcal{F}_2 \subseteq \mathcal{F}_1$.

Observe that the predicate is reflexive.

Now we state the propositions:

(8) Let us consider a non empty set X, a filter \mathcal{F}' of X, and a filter \mathcal{F} of X.

Suppose $\mathcal{F} = \{X\}$. Then \mathcal{F} is coarser than \mathcal{F}'.
(9) Let us consider a non empty set X, a non empty set I, a $(\text{Filt}(X))$-valued many sorted set M indexed by I, an element i of I, and a filter \mathcal{F}' of X. Suppose $\mathcal{F}' = M(i)$. Then the intersection of the family of filters M is coarser than \mathcal{F}'.

(10) Let us consider a set X, and a family S of subsets of X. Suppose $\text{FinMeetCl}(S)$ has non empty elements. Then S has non empty elements.

(11) Let us consider a non empty set X, a family G of subsets of X, and a filter \mathcal{F}' of X. Suppose $G \subseteq \mathcal{F}'$. Then

(i) $\text{FinMeetCl}(G) \subseteq \mathcal{F}'$, and

(ii) $\text{FinMeetCl}(G)$ has non empty elements.

The theorem is a consequence of (4).

Let X be a non empty set, \mathcal{F}' be a filter of X, and B be a non empty subset of \mathcal{F}'. We say that B is filter basis if and only if

(Def. 7) for every element f of \mathcal{F}', there exists an element b of B such that $b \subseteq f$.

Now we state the proposition:

(12) Let us consider a non empty set X, a filter \mathcal{F}' of X, and a non empty subset B of \mathcal{F}'. Then \mathcal{F}' is coarser than B if and only if B is filter basis.

Let X be a non empty set and \mathcal{F}' be a filter of X. Observe that there exists a non empty subset of \mathcal{F}' which is filter basis.

A generalized basis of \mathcal{F}' is a filter basis, non empty subset of \mathcal{F}'. Now we state the proposition:

(13) Let us consider a non empty set X. Then every filter of X is a generalized basis of \mathcal{F}'.

Let X be a set and B be a family of subsets of X. The functor $[B]$ yielding a family of subsets of X is defined by

(Def. 8) for every subset x of X, $x \in [B]$ iff there exists an element b of B such that $b \subseteq x$.

Now we state the propositions:

(14) Let us consider a set X, and a family S of subsets of X. Then $[S] = \{x, \text{where } x \text{ is a subset of } X : \text{there exists an element } b \text{ of } S \text{ such that } b \subseteq x\}$.

(15) Let us consider a set X, and an empty family B of subsets of X. Then $[B] = 2^X$.

(16) Let us consider a set X, and a family B of subsets of X. If $\emptyset \in B$, then $[B] = 2^X$.

2. Filters – Lattice-Theoretical Approach

Now we state the propositions:

(17) Let us consider a set X, a non empty family B of subsets of X, and a subset L of 2^X. If $B = L$, then $[B] = \uparrow L$.

(18) Let us consider a set X, and a family B of subsets of X. Then $B \subseteq [B]$.

Let X be a set and B_1, B_2 be families of subsets of X. We say that B_1 and B_2 are equivalent generators if and only if

\begin{itemize}
 \item (Def. 9) for every element b_1 of B_1, there exists an element b_2 of B_2 such that $b_2 \subseteq b_1$ and for every element b_2 of B_2, there exists an element b_1 of B_1 such that $b_1 \subseteq b_2$.
\end{itemize}

Let us note that the predicate is reflexive and symmetric.

Let us consider a set X and families B_1, B_2 of subsets of X.

Let us assume that B_1 and B_2 are equivalent generators. Now we state the propositions:

(19) $[B_1] \subseteq [B_2]$.

(20) $[B_1] = [B_2]$.

Let X be a non empty set, F' be a filter of X, and B be a non empty subset of F'. The functor $\# B$ yielding a non empty family of subsets of X is defined by the term

\begin{itemize}
 \item (Def. 10) B.
\end{itemize}

Now we state the propositions:

(21) Let us consider a non empty set X, a filter F' of X, and a generalized basis B of F'. Then $F' = [\# B]$.

(22) Let us consider a non empty set X, a filter F' of X, and a family B of subsets of X. If $F' = [B]$, then B is a generalized basis of F'.

(23) Let us consider a non empty set X, a filter F' of X, a generalized basis B of F', a family S of subsets of X, and a subset S_1 of F'. Suppose $S = S_1$ and $\# B$ and S are equivalent generators. Then S_1 is a generalized basis of F'. The theorem is a consequence of (19), (21), and (22).

(24) Let us consider a non empty set X, a filter F' of X, and generalized bases B_1, B_2 of F'. Then $\# B_1$ and $\# B_2$ are equivalent generators. The theorem is a consequence of (21).

Let X be a set and B be a family of subsets of X. We say that B is quasi basis if and only if

\begin{itemize}
 \item (Def. 11) for every elements b_1, b_2 of B, there exists an element b of B such that $b \subseteq b_1 \cap b_2$.
\end{itemize}
Let \(X \) be a non empty set. Let us note that there exists a non empty family of subsets of \(X \) which is quasi basis and there exists a non empty, quasi basis family of subsets of \(X \) which has non empty elements.

A filter base of \(X \) is a non empty, quasi basis family of subsets of \(X \) with non empty elements. Now we state the proposition:

(25) Let us consider a non empty set \(X \), and a filter base \(B \) of \(X \). Then \([B]\) is a filter of \(X \).

Let \(X \) be a non empty set and \(B \) be a filter base of \(X \). The functor \([B]\) yielding a filter of \(X \) is defined by the term

(Def. 12) \([B]\).

Now we state the propositions:

(26) Let us consider a non empty set \(X \), and filter bases \(B_1, B_2 \) of \(X \). Suppose \([B_1] = [B_2]\). Then \(B_1 \) and \(B_2 \) are equivalent generators.

(27) Let us consider a non empty set \(X \), a filter base \(F \) of \(X \), and a filter \(F' \) of \(X \). Suppose \(F \subseteq F' \). Then \([F]\) is coarser than \([F']\).

(28) Let us consider a non empty set \(X \), and a family \(G \) of subsets of \(X \). Suppose \(\text{FinMeetCl}(G) \) has non empty elements. Then

(i) \(\text{FinMeetCl}(G) \) is a filter base of \(X \), and

(ii) there exists a filter \(F' \) of \(X \) such that \(\text{FinMeetCl}(G) \subseteq F' \).

The theorem is a consequence of (4).

(29) Let us consider a non empty set \(X \), and a filter \(F' \) of \(X \). Then every generalized basis of \(F' \) is a filter base of \(X \).

(30) Let us consider a non empty set \(X \). Then every filter base of \(X \) is a generalized basis of \([B]\).

(31) Let us consider a non empty set \(X \), a filter \(F' \) of \(X \), a generalized basis \(B \) of \(F' \), and a subset \(L \) of \(2^X \). If \(L = \# B \), then \(F' = \uparrow L \). The theorem is a consequence of (21) and (17).

(32) Let us consider a non empty set \(X \), a filter base \(B \) of \(X \), and a subset \(L \) of \(2^X \). If \(L = B \), then \([B] = \uparrow L \).

(33) Let us consider a non empty set \(X \), filters \(F_1, F_2 \) of \(X \), a generalized basis \(B_1 \) of \(F_1 \), and a generalized basis \(B_2 \) of \(F_2 \). Then \(F_1 \) is coarser than \(F_2 \) if and only if \(B_1 \) is coarser than \(B_2 \). The theorem is a consequence of (21).

(34) Let us consider non empty sets \(X, Y \), a function \(f \) from \(X \) into \(Y \), a filter \(F' \) of \(X \), and a generalized basis \(B \) of \(F' \). Then

(i) \(f^\circ (\# B) \) is a filter base of \(Y \), and

(ii) \([f^\circ (\# B)]\) is a filter of \(Y \), and
(iii) \([f^\circ(\# B)] = \{M, \text{where } M \text{ is a subset of } Y : f^{-1}(M) \in F'\}\).

Proof: Set \(F = f^\circ(\# B)\). \(F\) is a quasi basis, non empty family of subsets of \(Y\) by (29), \([35] (123), (121)]\). \(F\) has non empty elements by \([35] (118)]\).

\([F] = \{M, \text{where } M \text{ is a subset of } Y : f^{-1}(M) \in F'\}\) by \([35] (143)], [12] (42)), (21), [35] (123)]. \(\square\)

Let \(X, Y\) be non empty sets, \(f\) be a function from \(X\) into \(Y\), and \(F'\) be a filter of \(X\). The image of filter \(F'\) under \(f\) yielding a filter of \(Y\) is defined by the term

(Def. 13) \(\{M, \text{where } M \text{ is a subset of } Y : f^{-1}(M) \in F'\}\).

Now we state the propositions:

(35) Let us consider non empty sets \(X, Y\), a function \(f\) from \(X\) into \(Y\), and a filter \(F'\) of \(X\). Then

(i) \(f^\circ F'\) is a filter base of \(Y\), and

(ii) \([f^\circ F'] = \text{the image of filter } F' \text{ under } f\).

The theorem is a consequence of (13) and (34).

(36) Let us consider a non empty set \(X\), and a filter base \(B\) of \(X\). If \(B = [B]\), then \(B\) is a filter of \(X\).

(37) Let us consider non empty sets \(X, Y\), a function \(f\) from \(X\) into \(Y\), a filter \(F'\) of \(X\), and a generalized basis \(B\) of \(F'\). Then

(i) \(f^\circ(\# B)\) is a generalized basis of the image of filter \(F'\) under \(f\), and

(ii) \([f^\circ(\# B)] = \text{the image of filter } F' \text{ under } f\).

The theorem is a consequence of (34) and (30).

(38) Let us consider non empty sets \(X, Y\), a function \(f\) from \(X\) into \(Y\), and filter bases \(B_1, B_2\) of \(X\). Suppose \(B_1\) is coarser than \(B_2\). Then \([B_1]\) is coarser than \([B_2]\). The theorem is a consequence of (30) and (33).

(39) Let us consider non empty sets \(X, Y\), a function \(f\) from \(X\) into \(Y\), and a filter \(F'\) of \(X\). Then \(f^\circ F'\) is a filter of \(Y\) if and only if \(Y = \text{rng } f\).

Proof: Reconsider \(f_3 = f^\circ F'\) as a filter base of \(Y\). \([f_3] \subseteq f_3\) by \([35] (143)], [11] (76), (77)]). \(\square\)

(40) Let us consider a non empty set \(X\), a non empty subset \(A\) of \(X\), a filter \(F'\) of \(A\), and a generalized basis \(B\) of \(F'\). Then

(i) \((\triangle A)^\circ(\# B)\) is a filter base of \(X\), and

(ii) \([(\triangle A)^\circ(\# B)] = \text{a filter of } X, \text{and}

(iii) \([(\triangle A)^\circ(\# B)] = \{M, \text{where } M \text{ is a subset of } X : (\triangle A)^{-1}(M) \in F'\}\).

Let \(L\) be a non empty relational structure. The functor \(\text{Tails}(L)\) yielding a non empty family of subsets of \(L\) is defined by the term
Convergent filter bases

(Def. 14) the set of all $\uparrow i$ where i is an element of L.

Now we state the proposition:

(41) Let us consider a non empty, transitive, reflexive relational structure L. Suppose Ω_L is directed. Then $[\text{Tails}(L)]$ is a filter of Ω_L.

PROOF: Tails(L) is non empty family of subsets of L and quasi basis and has non empty elements by [6] (22). □

Let L be a non empty, transitive, reflexive relational structure. Assume Ω_L is directed. The functor TailsFilterL yielding a filter of Ω_L is defined by the term

(Def. 15) $[\text{Tails}(L)]$.

Now we state the proposition:

(42) Let us consider a non empty, transitive, reflexive relational structure L. Suppose Ω_L is directed. Then Tails(L) is a generalized basis of TailsFilterL. The theorem is a consequence of (22).

Let L be a relational structure and x be a family of subsets of L. The functor $\# x$ yielding a family of subsets of Ω_L is defined by the term

(Def. 16) x.

Now we state the proposition:

(43) Let us consider a non empty set X, a non empty, transitive, reflexive relational structure L, and a function f from Ω_L into X. Suppose Ω_L is directed. Then $f^\circ(\# \text{Tails}(L))$ is a generalized basis of the image of filter TailsFilterL under f. The theorem is a consequence of (42) and (37).

Let us consider a non empty set X, a non empty, transitive, reflexive relational structure L, a function f from Ω_L into X, and a subset x of X. Now we state the propositions:

(44) Suppose Ω_L is directed and $x \in f^\circ(\# \text{Tails}(L))$. Then there exists an element j of L such that for every element i of L such that $i \geq j$ holds $f(i) \in x$.

(45) Suppose Ω_L is directed and there exists an element j of L such that for every element i of L such that $i \geq j$ holds $f(i) \in x$. Then there exists an element b of Tails(L) such that $f^\circ b \subseteq x$.

(46) Let us consider a non empty set X, a non empty, transitive, reflexive relational structure L, a function f from Ω_L into X, a filter \mathcal{F}' of X, and a generalized basis B of \mathcal{F}'. Suppose Ω_L is directed. Then \mathcal{F}' is coarser than the image of filter TailsFilterL under f if and only if B is coarser than $f^\circ(\# \text{Tails}(L))$. The theorem is a consequence of (43) and (33).

(47) Let us consider a non empty set X, a non empty, transitive, reflexive relational structure L, a function f from Ω_L into X, and a filter base B of
X. Suppose \(\Omega_L \) is directed. Then \(B \) is coarser than \(f^0(\# \text{Tails}(L)) \) if and only if for every element \(b \) of \(B \), there exists an element \(i \) of \(L \) such that for every element \(j \) of \(L \) such that \(i \leq j \) holds \(f(j) \in b \). The theorem is a consequence of (44) and (45).

Let \(X \) be a non empty set and \(s \) be a sequence of \(X \). The elementary filter of \(s \) yielding a filter of \(X \) is defined by the term (Def. 17) the image of filter \(\text{FrechetFilter}(\mathbb{N}) \) under \(s \).

Now we state the propositions:

(48) There exists a sequence \(\mathcal{F}' \) of \(2^\mathbb{N} \) such that for every element \(x \) of \(\mathbb{N} \), \(\mathcal{F}'(x) = \{ y, \text{where } y \text{ is an element of } \mathbb{N} : x \leq y \} \).

Proof: Define \(\mathcal{F}(\text{object}) = \{ y, \text{where } y \text{ is an element of } \mathbb{N} : \text{there exists an element } x_0 \text{ of } \mathbb{N} \text{ such that } x_0 = \$1 \text{ and } x_0 \leq y \} \). There exists a function \(f \) from \(\mathbb{N} \) into \(2^\mathbb{N} \) such that for every object \(x \) such that \(x \in \mathbb{N} \) holds \(f(x) = \mathcal{F}(x) \). Consider \(\mathcal{F}' \) being a function from \(\mathbb{N} \) into \(2^\mathbb{N} \) such that for every object \(x \) such that \(x \in \mathbb{N} \) holds \(\mathcal{F}'(x) = \mathcal{F}(x) \). For every element \(x \) of \(\mathbb{N} \), \(\mathcal{F}'(x) = \{ y, \text{where } y \text{ is an element of } \mathbb{N} : x \leq y \} \). □

(49) Let us consider a natural number \(n \). Then \(\mathbb{N} \setminus \{ t, \text{where } t \text{ is an element of } \mathbb{N} : n \leq t \} \) is finite.

Proof: \(\mathbb{N} \setminus \{ t, \text{where } t \text{ is an element of } \mathbb{N} : n \leq t \} \subseteq n + 1 \) by [8] (3), (5), [32] (4). □

(50) Let us consider an element \(p \) of the ordered \(\mathbb{N} \). Then \(\{ x, \text{where } x \text{ is an element of } \mathbb{N} : \text{there exists an element } p_0 \text{ of } \mathbb{N} \text{ such that } p = p_0 \text{ and } p_0 \leq x \} = \uparrow p \).

Proof: For every element \(p \) of the carrier of the ordered \(\mathbb{N} \), \(\{ x, \text{where } x \text{ is an element of the carrier of the ordered } \mathbb{N} : p \leq x \} = \uparrow p \) by [6] (18). □

Observe that \(\Omega \) the ordered \(\mathbb{N} \) is directed and the ordered \(\mathbb{N} \) is reflexive.

Now we state the proposition:

(51) Let us consider a denumerable set \(X \). Then \(\text{FrechetFilter}(X) = \) the set of all \(X \setminus A \) where \(A \) is a finite subset of \(X \).

Let us consider a sequence \(\mathcal{F}' \) of \(2^\mathbb{N} \).

Let us assume that for every element \(x \) of \(\mathbb{N} \), \(\mathcal{F}'(x) = \{ y, \text{where } y \text{ is an element of } \mathbb{N} : x \leq y \} \). Now we state the propositions:

(52) \(\text{rng} \mathcal{F}' \) is a generalized basis of \(\text{FrechetFilter}(\mathbb{N}) \).

Proof: \(\text{FrechetFilter}(\mathbb{N}) = \) the set of all \(\mathbb{N} \setminus A \) where \(A \) is a finite subset of \(\mathbb{N} \). For every object \(t \) such that \(t \in \text{rng} \mathcal{F}' \) holds \(t \in \text{FrechetFilter}(\mathbb{N}) \). Reconsider \(\mathcal{F}_1 = \text{rng} \mathcal{F}' \) as a non empty subset of \(\text{FrechetFilter}(\mathbb{N}) \). \(\mathcal{F}_1 \) is filter basis by [21] (2), [4] (44), [11] (3). □
(53) $\# \text{Tails}(\text{the ordered } \mathbb{N}) = \text{rng } \mathcal{F}'$. The theorem is a consequence of (50).

Now we state the proposition:

(54) (i) $\# \text{Tails}(\text{the ordered } \mathbb{N})$ is a generalized basis of $\text{FrechetFilter}(\mathbb{N})$, and

(ii) $\text{TailsFilter} \text{ the ordered } \mathbb{N} = \text{FrechetFilter}(\mathbb{N})$.

The theorem is a consequence of (48), (53), (52), and (21).

The base of Frechet filter yielding a filter base of \mathbb{N} is defined by the term

(Def. 18) $\# \text{Tails}(\text{the ordered } \mathbb{N})$.

Now we state the propositions:

(55) $\mathbb{N} \in \text{the base of Frechet filter}$.

(56) The base of Frechet filter is a generalized basis of $\text{FrechetFilter}(\mathbb{N})$.

(57) Let us consider a non empty set X, filters $\mathcal{F}_1, \mathcal{F}_2$ of X, and a filter \mathcal{F}' of X. Suppose \mathcal{F}' is finer than \mathcal{F}_1 and \mathcal{F}' is finer than \mathcal{F}_2. Let us consider an element M_1 of \mathcal{F}_1, and an element M_2 of \mathcal{F}_2. Then $M_1 \cap M_2$ is not empty.

(58) Let us consider a non empty set X, and filters $\mathcal{F}_1, \mathcal{F}_2$ of X. Suppose for every element M_1 of \mathcal{F}_1 for every element M_2 of \mathcal{F}_2, $M_1 \cap M_2$ is not empty. Then there exists a filter \mathcal{F}' of X such that

(i) \mathcal{F}' is finer than \mathcal{F}_1, and

(ii) \mathcal{F}' is finer than \mathcal{F}_2.

Let X be a set and x be a subset of X. The functor $\text{SubsetToBooleSubset } x$ yielding an element of 2^X_{\subseteq} is defined by the term

(Def. 19) x.

Now we state the propositions:

(59) Let us consider an infinite set X. Then $X \in \text{the set of all } X \setminus A \text{ where } A \text{ is a finite subset of } X$.

(60) Let us consider a set X, and a subset A of X. Then $\{B, \text{ where } B \text{ is an element of } 2^X_{\subseteq} : A \subseteq B\} = \{B, \text{ where } B \text{ is a subset of } X : A \subseteq B\}$.

(61) Let us consider a set X, and an element a of 2^X_{\subseteq}. Then $\uparrow a = \{Y, \text{ where } Y \text{ is a subset of } X : a \subseteq Y\}$.

(62) Let us consider a set X, and a subset A of X. Then $\{B, \text{ where } B \text{ is an element of } 2^X_{\subseteq} : A \subseteq B\} = \uparrow \text{SubsetToBooleSubset } A$. The theorem is a consequence of (60).

(63) Let us consider a non empty set X, and a filter \mathcal{F}' of X. Then $\bigcup \mathcal{F}' = X$.

(64) Let us consider an infinite set X. Then the set of all $X \setminus A \text{ where } A \text{ is a finite subset of } X$ is a filter of X. The theorem is a consequence of (59).
Let us consider a set X. Now we state the propositions:

65) 2^X is a filter of 2^X.
66) $\{X\}$ is a filter of 2^X.

67) Let us consider a non empty set X. Then $\{X\}$ is a filter of X.

Let us consider an element A of 2^X. Now we state the propositions:

68) $\{Y, \text{ where } Y \text{ is a subset of } X: A \subseteq Y\}$ is a filter of 2^X.
69) $\{B, \text{ where } B \text{ is an element of } 2^X: A \subseteq B\}$ is a filter of 2^X. The theorem is a consequence of (60) and (68).

Now we state the proposition:

70) Let us consider a non empty set X, and a non empty subset B of 2^X. Then for every elements x, y of B, there exists an element z of B such that $z \subseteq x \cap y$ if and only if B is filtered.

\textbf{Proof:} For every elements x, y of B, there exists an element z of B such that $z \subseteq x \cap y$ by [19, (2)]. □

Let us consider a non empty set X and a non empty subset \mathcal{F}' of the lattice of subsets of X. Now we state the propositions:

71) \mathcal{F}' is a filter of the lattice of subsets of X if and only if for every elements p, q of \mathcal{F}', $p \cap q \in \mathcal{F}'$ and for every element p of \mathcal{F}' and for every element q of the lattice of subsets of X such that $p \subseteq q$ holds $q \in \mathcal{F}'$.
72) \mathcal{F}' is a filter of the lattice of subsets of X if and only if for every subsets Y_1, Y_2 of X, if $Y_1, Y_2 \in \mathcal{F}'$, then $Y_1 \cap Y_2 \in \mathcal{F}'$ and if $Y_1 \in \mathcal{F}'$ and $Y_1 \subseteq Y_2$, then $Y_2 \in \mathcal{F}'$. The theorem is a consequence of (71).

Now we state the propositions:

73) Let us consider a non empty set X, and a non empty family \mathcal{F} of subsets of X. Suppose \mathcal{F} is a filter of the lattice of subsets of X. Then \mathcal{F} is a filter of 2^X. The theorem is a consequence of (71).
74) Let us consider a non empty set X. Then every filter of 2^X is a filter of the lattice of subsets of X. The theorem is a consequence of (72).
75) Let us consider a non empty set X, and a non empty subset \mathcal{F}' of the lattice of subsets of X. Then \mathcal{F}' is filter of the lattice of subsets of X and has non empty elements if and only if \mathcal{F}' is a filter of X. The theorem is a consequence of (72).
76) Let us consider a non empty set X. Then every proper filter of 2^X is a filter of X.

\textbf{Proof:} \mathcal{F}' has non empty elements by [19, (18)], [7, (4)]. □
77) Let us consider a non empty topological space T, and a point x of T. Then the neighborhood system of x is a filter of the carrier of T.
Let T be a non empty topological space and \mathcal{F}' be a proper filter of 2^{Ω_T}. The functor $\text{BooleanFilterToFilter}(\mathcal{F}')$ yielding a filter of the carrier of T is defined by the term

(Def. 20) \mathcal{F}'.

Let \mathcal{F}_1 be a filter of the carrier of T and \mathcal{F}_2 be a proper filter of 2^{Ω_T}. We say that \mathcal{F}_1 is finer than \mathcal{F}_2 if and only if

(Def. 21) $\text{BooleanFilterToFilter}(\mathcal{F}_2) \subseteq \mathcal{F}_1$.

3. Limit of a Filter

Let T be a non empty topological space and \mathcal{F}' be a filter of the carrier of T. The functor $\text{LimFilter}(\mathcal{F}')$ yielding a subset of T is defined by the term

(Def. 22) $\{ x, \text{ where } x \text{ is a point of } T : \mathcal{F}' \text{ is finer than the neighborhood system of } x \}$.

Let B be a filter base of the carrier of T. The functor LimB yielding a subset of T is defined by the term

(Def. 23) LimFilter([B]).

Now we state the proposition:

(78) Let us consider a non empty topological space T, and a filter \mathcal{F}' of the carrier of T. Then there exists a proper filter \mathcal{F}_1 of 2^{α} such that $\mathcal{F}' = \mathcal{F}_1$, where α is the carrier of T. The theorem is a consequence of (73) and (75).

Let T be a non empty topological space and \mathcal{F}' be a filter of the carrier of T. The functor $\text{FilterToBooleanFilter}(\mathcal{F}', T)$ yielding a proper filter of 2^{Ω_T} is defined by the term

(Def. 24) \mathcal{F}'.

Let us consider a non empty topological space T, a point x of T, and a filter \mathcal{F}' of the carrier of T. Now we state the propositions:

(79) x is a convergence point of \mathcal{F}' and T if and only if x is a convergence point of $\text{FilterToBooleanFilter}(\mathcal{F}', T)$ and T.

(80) x is a convergence point of \mathcal{F}' and T if and only if $x \in \text{LimFilter}(\mathcal{F}')$.

The theorem is a consequence of (78).

Let T be a non empty topological space and \mathcal{F}' be a filter of 2^{Ω_T}. The functor $\text{LimFilterB}(\mathcal{F}')$ yielding a subset of T is defined by the term

(Def. 25) $\{ x, \text{ where } x \text{ is a point of } T : \text{the neighborhood system of } x \subseteq \mathcal{F}' \}$.

Let us consider a non empty topological space T and a filter \mathcal{F}' of the carrier of T. Now we state the propositions:
(81) \(\text{LimFilter}(F') = \text{LimFilterB}(\text{FilterToBooleanFilter}(F', T)) \).

(82) \(\text{Lim}(\text{the net of } \text{FilterToBooleanFilter}(F', T)) = \text{LimFilter}(F') \).

(83) Let us consider a Hausdorff, non empty topological space \(T \), a filter \(F' \) of the carrier of \(T \), and points \(p, q \) of \(T \). If \(p, q \in \text{LimFilter}(F') \), then \(p = q \).

Let \(T \) be a Hausdorff, non empty topological space and \(F' \) be a filter of the carrier of \(T \). Note that \(\text{LimFilter}(F') \) is trivial.

Let \(X \) be a non empty set, \(T \) be a non empty topological space, \(f \) be a function from \(X \) into the carrier of \(T \), and \(F' \) be a filter of \(X \). The functor \(\text{lim}_{\mathcal{F}'} f \) yielding a subset of \(\Omega_T \) is defined by the term

(Def. 26) \(\text{LimFilter}(\text{the image of filter } F' \text{ under } f) \).

Let \(L \) be a non empty, transitive, reflexive relational structure and \(f \) be a function from \(\Omega_L \) into the carrier of \(T \). The functor \(\text{LimF}(f) \) yielding a subset of \(\Omega_T \) is defined by the term

(Def. 27) \(\text{LimFilter}(\text{the image of filter TailsFilter } L \text{ under } f) \).

Now we state the proposition:

(84) Let us consider a non empty topological space \(T \), a non empty, transitive, reflexive relational structure \(L \), a function \(f \) from \(\Omega_L \) into the carrier of \(T \), a point \(x \) of \(T \), and a generalized basis \(B \) of \(\text{BooleanFilterToFilter}(\text{the neighborhood system of } x) \). Suppose \(\Omega_L \) is directed. Then \(x \in \text{LimF}(f) \) if and only if for every element \(b \) of \(B \), there exists an element \(i \) of \(L \) such that for every element \(j \) of \(L \) such that \(i \leq j \) holds \(f(j) \in b \). The theorem is a consequence of (46), (29), and (47).

Let \(T \) be a non empty topological space and \(s \) be a sequence of \(T \). The functor \(\text{LimF}(s) \) yielding a subset of \(T \) is defined by the term

(Def. 28) \(\text{LimFilter}(\text{the elementary filter of } s) \).

Now we state the proposition:

(85) Let us consider a non empty topological space \(T \), and a sequence \(s \) of \(T \). Then \(\lim_{\text{FrechetFilter}(\mathbb{N})} s = \text{LimF}(s) \).

Let us consider a non empty topological space \(T \) and a point \(x \) of \(T \).

(86) The neighborhood system of \(x \) is a filter base of \(\Omega_T \). The theorem is a consequence of (76), (13), and (29).

(87) Every generalized basis of \(\text{BooleanFilterToFilter}(\text{the neighborhood system of } x) \) is a filter base of \(\Omega_T \).

(88) Let us consider a non empty set \(X \), a sequence \(s \) of \(X \), and a filter base \(B \) of \(X \). Then \(B \) is coarser than \(s^\circ \) (the base of Frechet filter) if and only if for every element \(b \) of \(B \), there exists an element \(i \) of the ordered \(\mathbb{N} \) such that for every element \(j \) of the ordered \(\mathbb{N} \) such that \(i \leq j \) holds \(s(j) \in b \).
(89) Let us consider a non empty topological space T, a sequence s of T, a point x of T, and a generalized basis B of BooleanFilterToFilter(the neighborhood system of x). Then $x \in \lim_{n \to \infty} s \circ q$ if and only if B is coarser than s° (the base of Frechet filter). The theorem is a consequence of (46) and (54).

(90) Let us consider a non empty topological space T, a sequence s of Ω_T, a point x of T, and a generalized basis B of BooleanFilterToFilter(the neighborhood system of x). Then B is coarser than $s \circ q$ (the base of Frechet filter) if and only if for every element b of B, there exists an element i of the ordered \mathbb{N} such that for every element j of the ordered \mathbb{N} such that $i \leq j$ holds $s(j) \in b$. The theorem is a consequence of (29) and (47).

Let us consider a non empty topological space T, a sequence s of the carrier of T, a point x of T, and a generalized basis B of BooleanFilterToFilter(the neighborhood system of x).

(91) $x \in \lim_{n \to \infty} s \circ q$ if and only if for every element b of B, there exists an element i of the ordered \mathbb{N} such that for every element j of the ordered \mathbb{N} such that $i \leq j$ holds $s(j) \in b$. The theorem is a consequence of (89) and (90).

(92) $x \in \lim_{n \to \infty} s$ if and only if for every element b of B, there exists an element i of the ordered \mathbb{N} such that for every element j of the ordered \mathbb{N} such that $i \leq j$ holds $s(j) \in b$. The theorem is a consequence of (91).

4. Nets

Let L be a 1-sorted structure and s be a sequence of the carrier of L. The net of s yielding a non empty, strict net structure over L is defined by the term

(Def. 29) $\langle \mathbb{N}, \leq \mathbb{N}, s \rangle$.

Let L be a non empty 1-sorted structure. Let us note that the net of s is non empty.

Now we state the proposition:

(93) Let us consider a non empty 1-sorted structure L, a set B, and a sequence s of the carrier of L. Then the net of s is eventually in B if and only if there exists an element i of the net of s such that for every element j of the net of s such that $i \leq j$ holds (the net of $s)(j) \in B$.

Let us consider a non empty topological space T, a sequence s of the carrier of T, a point x of T, and a generalized basis B of BooleanFilterToFilter(the neighborhood system of x). Now we state the propositions:

(94) for every element b of B, there exists an element i of the ordered \mathbb{N} such that for every element j of the ordered \mathbb{N} such that $i \leq j$ holds $s(j) \in b$ if
and only if for every element b of B, there exists an element i of the net of s such that for every element j of the net of s such that $i \leq j$ holds (the net of $s)(j) \in b$.

(95) \(x \in \text{LimF}(s) \) if and only if for every element b of B, the net of s is eventually in b. The theorem is a consequence of (92), (94), and (93).

(96) \(x \in \text{LimF}(s) \) if and only if for every element b of B, there exists an element i of \mathbb{N} such that for every element j of \mathbb{N} such that $i \leq j$ holds \(s(j) \in b \). The theorem is a consequence of (91).

(97) \(x \in \text{LimF}(s) \) if and only if for every element b of B, there exists a natural number i such that for every natural number j such that $i \leq j$ holds \(s(j) \in b \). The theorem is a consequence of (96).

REFERENCES

Convergent filter bases

Received June 30, 2015